求解∫根号[(1-x)⼀x]dx

请写下过程
2025-06-27 10:39:27
推荐回答(2个)
回答1:

∫√[(1-x)/x] dx
令ψ²=(1-x)/x => dx=-2ψ/(ψ²+1)² dψ
=> -2∫ψ²/(ψ²+1)² dψ
令ψ=tanω => dψ=sec²ω dω
sinω=ψ/√(ψ²+1),cosω=1/√(ψ²+1)
=> -2∫tan²ω/(tan²ω+1)² * (sec²ω dω)
=> -2∫tan²ω/sec⁴ω * (sec²ω dω)
=> -2∫tan²ω/sec²ω dω
=> -2∫sin²ω dω
=> ∫(cos2ω-1) dω
=> sinωcosω - ω + C
=> [ψ/√(ψ²+1)][1/√(ψ²+1)] - arccos[1/√(ψ²+1)] + C
=> √[(1-x)/x]/[(1-x)/x + 1] - arccos{1/√[(1-x)/x + 1]} + C
=> √(x-x²) - arccos√x + C

回答2:

=lnx-x