设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则OA?OB=-34-34

2025-06-29 09:27:06
推荐回答(1个)
回答1:

法一:抛物线y2=2x的焦点F(

1
2
,0 ),
当AB的斜率不存在时,可得A(
1
2
,1),B(
1
2
,-1),
OA
?
OB
=(
1
2
,1)?(
1
2
,-1)=
1
4
-1=-
3
4

法二:由题意知,抛物线y2=2x的焦点坐标为(
1
2
,0),∴直线AB的方程为y=k(x-
1
2
),
y2=2x
y=k(x?
1
2
)
得k2x2-(k2+2)x+
1
4
k2=0,设A(x1,y1),B(x2,y2),
x1+x2
k2+ 2
k2
x1?x2
1
4
,y1?y2=k(x1-
1
2
)?k(x2-
1
2
)=k2[x1?x2-(x1+x2)+
1
4
]
OA
?
OB
=x1?x2+y1?y2=
k2+2
k2
+k2(
1
4
?
k2+2
4k2
+
1
4
) =?
3
4

故答案为:-
3
4