(1)∵f(x)=ax3-3x2
∴f'(x)=3ax2-6x=3x(ax-2).
∵x=1是f(x)的一个极值点,
∴f'(1)=0,
∴a=2
(2)①当a=0时,f(x)=-3x2在区间(-1,0)上是增函数,∴a=0符合题意;
②当a≠0时,f'(x)=3ax(x?),令f'(x)=0得:x1=0,x2=
当a>0时,对任意x∈(-1,0),f'(x)>0,
∴a>0 (符合题意)
当a<0时,当x∈(,0)时,f'(x)>0,
∴≤?1,∴-2≤a<0(符合题意)
综上所述,a≥-2.
(3)g(x)=ax3+(3a-3)x2-6x,
a>0时,g(x)=ax3+(3a-3)x2-6x,x∈[0,2].
g'(x)=3ax2+2(3a-3)x-6=3[ax2+2(a-1)x-2],
令g'(x)=0,即ax2+2(a-1)x-2=0(*),显然有△=4a2+4>0.
设方程(*)的两个根为x1,x2,由(*)式得x1x2=?<0,不妨设x1<0<x2.
当0<x2<2时,g(x2)为极小值
所以g(x)在[0,2]上的最大值只能为g(0)或g(2)
当x2≥2时,由于g(x)在[0,2]上是单调递减函数
所以最大值为g(0),所以在[0,2]上的最大值只能为g(0)或g(2)
又已知g(x)在x=0处取得最大值
所以g(0)≥g(2)
即0≥20a-24,解得a≤,又因为a>0,所以a∈(0,].
故答案为:(1)a=2;(2)a≥-2;(3)a∈(0,]