l令f(x)=sinx/2-x/πf'(x)=1/2cosx/2-1/π=0cosx/2=2/πx/2=arccos2/πx=2arccos2/π唯一驻点又f''(x)=-1/4sinx/2<0(x∈(0,π))所以函数图像是个凸弧,即驻点左边递增,右边递减而左端点处f(0)=0右端点处f(π)=sinπ/2-π/π=1-1=0即函数最小值=0(在端点处)所以f(x)>0,x∈(0,π)即sinx/2>x/π。