已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当三角形OAB面积等于10时

2025-06-26 16:59:51
推荐回答(1个)
回答1:

(1)设A(x1,y1),B(x2,y2).
联立

y=k(x+1)
y2=?x
,∵k≠0,∴可化为y2+
1
k
y?1=0
,∴△>0.
y1+y2=?
1
k
,y1y2=-1.
OA
?
OB
=x1x2+y1y2=(
1
k
y1?1)(
1
k
y2?1)
+y1y2=(
1
k2
+1)y1y2?
1
k
(y1+y2)+1
=?(
1
k2
+1)+
1
k2
+1
=0,
∴OA⊥OB.
(2)由(1)可得点O到直线AB的距离d=
|k|
1+k2

|AB|=
(1+
1
k2
)[(y1+y2)2?4y1y2]
=
(1+
1
k2
)[
1
k2
?4×(?1)]
=
(1+k2)(1+4k2)
k2

∴S△OAB=
1
2
|AB|?d
=
1
2
?
(1+k2)(1+4k2)
k2
?
|k|
1+k2
=
1
2
?
1+4k2
|k|
10

化为36k2=1.
解得k=±
1
6