证明:∵△ABC是等腰直角三角形,CH⊥AB,∴AC=BC,∠ACH=∠CBA=45°.∵CH⊥AB,AE⊥CF,∴∠EDH+∠HGE=180°.∵∠AGC=∠HGE,∠HDE+∠CDB=180°,∴∠AGC=∠CDB.在△AGC和△CDB中, ∠ACG=∠CBD ∠AGC=∠CDB AC=CB ,∴△AGC≌△CDB(AAS).∴BD=CG.