楼上是对的,就是一个等差数列(1+2+3+...+n)和一个等比数列(1/2,1/2^2,1/2^3,....1/2^n)的求和;等差数列Sn=n(a1+an)/2=n(1+n)/2;等比数列Sn=[A1(1-q^n)]/(1-q)=[1/2(1-1/2^n)]/(1-1/2)
=1+2+....+n+(1/2+1/2^2+1/2^3+....1/2^n)=n(n+1)/2+1/2(1-1/2^n)/(1-1/2)=n(n+1)/2+1-1/2^n