设二次函数f(x)=ax^2+bx+c在区间[-2,2]上的最大值最小值分别为M,m ,集合A={x|f(x)=x}。

2025-06-26 10:23:46
推荐回答(1个)
回答1:

(1)由A={1,2}得:a+b+c=1,4a+2b+c=2
由f(0)=2得:0+0+c=2
综上,得a=1,b=-2,c=2
f(x)=x2-2x+2
易得,M=f(-2)=4+4+2=10,m=f(1)=1-2+2=1
(2)由A={2}知道方程ax^2+(b-1)x+c=0有2个相等的根是2,那么有b-1=-4a,c=4a,代入得到f(x)=ax^2+(1-4a)x+4a a≥1;

其对称轴x=(4a-1)/a≥3,即函数在区间[-2,2]上单调递减,
则最大值M=f(-2)=16a-2;
最小值m=f(2)=2;
g(a)=M+m=16a a≥1;
那么g(a)的最小值是16,当a=1时取到.