如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:△BEC≌△CDA.

2025-06-27 03:11:18
推荐回答(1个)
回答1:

证明:∵BE⊥CE于E,AD⊥CE于D,
∴∠BEC=∠CDA=90°,
在Rt△BEC中,∠BCE+∠CBE=90°,
在Rt△BCA中,∠BCE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,
∴△BEC≌△CDA.