已知函数f(x)=2sin(π-x)cosx,求 (1)f(x)的最小正周期 (2)f(x)在区间【-π⼀6,π⼀2】的最小值

2025-06-26 21:15:27
推荐回答(2个)
回答1:

解:
f(x)=2sin(π-x)cosx
=2sinxcosx
=sin2x
T=2π/2=π
答:最小正周期为π
(2)解:
x∈[-π/6,π/2]
2x∈[-π/3],π]
f(x)=sin2x
f(x)max=f(π/2)=1
答:最大值为1

回答2: