a(1)=s(1)=1/2-2=-3/2
a(n+1)=s(n+1)-s(n)=(2n+1)/2-2=(2n-3)/2=[2(n+1)-5]/2,
a(n)=(2n-5)/2=n-5/2.
b(n)=a(n+1)/a(n)=(2n+2-5)/(2n-5)=(2n-5+2)/(2n-5)=1+2/(2n-5)=1+1/(n-5/2),
b(1)=1+1/(1-5/2)=1-1/(3/2)=1-2/3=1/3,
b(2)=1+1/(2-5/2)=1-1/(1/2)=1-2=-1,
b(3)=1+1/(3-5/2)=1+1/(1/2)=1+2=3,
n>=3时,n-5/2〉0,单调递增,1/(n-5/2)>0单调递减,b(n)=1+1/(n-5/2)单调递减。
n->无穷时,b(n)->1.
n>=3时, 1所以,{b(n)}的最大项为b(3)=3,最小项为b(2)=-1.