x²-3x+1=0
x-3+1/x=0
∴x+1/x=3
x²/x四次方+3x²+1 分子分母同时除以x²
=1/(x²+3+1/x²)
=1/[(x+1/x)²+1]
=1/(3²+1)
=1/10
x²-3x+1=0,
-(x²-3x)=1,-3(x²-3x)=3,x²-3x= -1
x²/(x^4+3x²+1)=x²/(x^4+3x²-x²+3x)
=x²/(x^4+2x²+3x)
=x/(x^3+2x+3)
=x/(x^3+2x-3x²+9x)
=1/(x²-3x+11)
=1/(11-1)
=1/10
∵x²-3x+1=0 ∴x²=3x-1 ∴x4=9x²-6x+1
∴x四次方+3x²+1=9x²-6x+1+3x-1=9x²-3x+1=9(3x-1)+3x-1
=30x-10=10(3x-1)=10x²
∴原式=x²/10x²=1/10