∫In(1+x²)dx=x*In(1+x²)+∫xd(In(1+x²))=x*In(1+x²)+∫2x²/(x²+1)dx=x*In(1+x²)+∫(2-2/(x²+1))dx
因为∫(1/(x²+1))dx=arctanx
所以 原式=x*In(1+x²)+2x-2arctanx+C
原式=xln(1+x²)-∫xdln(1+x²)
=xln(1+x²)-∫x*1/(1+x²)*2xdx
=xln(1+x²)-2∫x²/(1+x²)dx
=xln(1+x²)-2∫[1-1/(1+x²)]dx
=xln(1+x²)-2x+2arctanx+C
你好,很高兴回答的问题
∫ln(1+x^2)dx
=xln(1+x^2)-∫xdln(1+x^2)
=xln(1+x^2)-∫2x^2/(1+x^2)dx
=xln(1+x^2) + ∫ [ -2 + 2/(1+x^2) ] dx
=xln(1+x^2) -2x + 2arctanx +C
∫In(1+x²)dx
=xln(1+x²)-2∫x²/(1+x²)dx
=xln(1+x²)-2∫(x²+1-1)/(1+x²)dx
=xln(1+x²)-2∫{1-1/(1+x²)}dx
=xln(1+x²)-2∫dx+∫2/(1+x²)}dx
=xln(1+x²)-2x+2arctanx+C
利用分部积分就可以了