已知数列{an}的前n项和记为Sn,且a1=2,an+1=Sn+2.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若cn=nan,求数

2025-06-23 19:04:07
推荐回答(1个)
回答1:

(Ⅰ)∵an+1=Sn+2,∴n≥2时,an=Sn-1+2
两式相减可得an+1-an=Sn-Sn-1=an,∴an+1=2an(n≥2)
∵a1=2,∴a2=S1+2=4,∴n≥2时,an=4?2n-2=2n
∵a1=2,也符合上式,∴数列{an}的通项公式为an=2n
(Ⅱ)cn

n
an
=n?(
1
2
)n

∴Tn=1×
1
2
+2×(
1
2
)2
+…+n?(
1
2
)
n

1
2
Tn=1×(
1
2
)2
+…+(n?1)?(
1
2
)
n
+n?(
1
2
)
n+1

①-②:
1
2
Tn=
1
2
+(
1
2
)
2
+…+(
1
2
)
n
-n?(
1
2
)
n+1
=1-(
1
2
)
n
-n?(
1
2
)
n+1

∴Tn=2-(
1
2
)
n
?(n+2)