求微分方程y✀- y⼀x+1=(x+1)3⼀2的通解 急求啊?

2025-06-27 13:58:53
推荐回答(2个)
回答1:

你的微分方程是不是:y'-y/(x+1)=(x+1)^(3/2)
一阶线性微分方程,套公式
y=e^(∫1/(x+1)dx)[∫ (x+1)^(3/2)*e^(∫-1/(x+1)dx) dx + C]
=e^(ln(x+1))[∫ (x+1)^(3/2)*e^(-ln(x+1)) dx + C]
=(x+1)[∫ (x+1)^(3/2)*(x+1)^(-1) dx + C]
=(x+1)[∫ (x+1)^(1/2) dx + C]
=(x+1)[(2/3)(x+1)^(3/2) + C]
=(2/3)(x+1)^(5/2)+C(x+1)

回答2:

微分方程y'+p(x)y=q(x)通解为y=e-∫p(x)dx (c+∫q(x)e∫p(x)dx)
本题p(x)=-1/(x+1),q(x)=(x+1)^(3/2)
代入公式得y=(x+1)[(2/3)(x+1)^(3/2)+C]