已知,如图,在菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF。(1)求证:AE=AF

2025-06-25 01:08:18
推荐回答(3个)
回答1:

证明:
1、
∵菱形ABCD
∴AD=AB,∠B=∠D
∵BE=DF
∴△ADF全等于△ABE (SAS)
∴AE=AF
2、连接EF、AC
∵菱形ABCD
∴AB=BC=AD=CD,∠B=∠D
∵∠B=60
∴∠D=60
∴等边△ABC,等边△ADC
∴∠BAC=60, ∠DAE=60
∵E为BC中点
∴BE=CE
∵AE=AE
∴△ABE全等于△ACE
∴∠BAE=∠CAE
∴∠CAE=∠BAC/2=30
同理可得∠CAF=30
∴∠EAF=∠CAE+∠CAF=30+30=60
∵AE=AF
∴等边三角形AEF

回答2:

第二小题复杂了,连接AC,EF是对的,∵AC平分∠BCD,∴∠ACE=∠ACF,设EF,AC相交处为G,在△CEG和△CFG中,{∠ACE=∠ACF,EC=FC,∠FEC=∠EFC ∴两三角形全等,所以EG=FG,∠EGC=∠FGC=90°,∴AE=AF(垂直平分线定理)

回答3:

你的图