解:∵f(x)=ex,∴f′(x)=f″(x)=....=f^n(x)=ex∴f(0)=f′(0)=f″(0)=....=f^n(0)=1函数在区间-r≤x≤r上有|fn(x)|=|e^x|≤e^r(n=1,2)所以函数ex可以在区间[-r,r]上展开成幂级数,结果为e^x=1+f'(0)x/1!+f"(0)x^2/2!+...+f^n(0)x^n/n!e^x=1+x+x^2/2!+x^3/3!+...+x^n/n!
f(X)=e^x=∑(n=0,∞)x^n/n!