lim(x->1) (ax²+2x+b) /(x²-3x+2)=2; 求a、b的值。
解:由于x→1lim(ax²+2x+b)=a+b;x→1lim(x²-3x+2)=0;而x→1lim(ax²+2x+b)/(x²-3x+2)=2;
又x²-3x+2=(x-1)(x-2);故x=1必是分子的根,即将x=1代入得a+2+b=0,故有b=-a-2.......(1)
代入原式得x→1lim(ax²+2x-a-2)/(x²-3x+2)=x→1lim[ax(x-1)+a(x-1)+2(x-1)]/(x-1)(x-2)
=x→1lim[(x-1)(ax+a+2)]/(x-1)(x-2)=x→1lim(ax+a+2)/(x-2)=(2a+2)/(-1)=2,故2a=-4,a=-2;
再代入(1)式得b=0.
事实上,x→1lim(-2x²+2x)/(x²-3x+2)=x→1lim[-2(x-1)]/(x-1)(x-2)=x→1lim[-2/(x-2)]=2.
a=0
b=-2