t=3^x>0, x属于R
y=(t-1/t)/2, y属于R
t^2-2yt-1=0
取正值得t=y+√(y^2+1)
因此x=log3 [y+√(y^2+1)], y属于R
因此反函数为:
y=log3[x+√(x^2+1)], x属于R
先求函数值域;易知y属于R将等式展开得3^2x-2y3^x-1=0解方程得3^x=y+根号y^2+1或3^x=y-根号y^2+1(舍掉,因为3^x>o)等式两边取对数得log33^x=log3(y+根号y^2+1)得x=log3(y+根号y^2+1)交换变量即y=log3(x+根号x^2+1)(x属于全体实数)