已知函数f(x)=tan(2x+π/4), (1)求f(x)的定义域与最小正周期 (2)设α∈(0,π/4),若f(α/2)=2cos2α
(1)解析:∵函数f(x)=tan(2x+π/4)
其定义域为:kπ-π/2<2x+π/4
(2)解析:∵α∈(0,π/4),f(α/2)=2cos2α
f(α/2)= tan(α+π/4)=(1+tanα)/(1-tanα)= (cosα+sinα)/(cosα-sinα)
= (1+sin2α)/cos2α=2cos2α
1+sin2α=2(cos2α)^2==> sin2α=cos4α
∴α=π/12
1. 最小正周期T=π/2
定义域为2x+π/4∈(2kπ-π/2, 2kπ+π/2)
x∈(kπ-3π/8, kπ+π/8)
2. f(α/2)=tan(α+π/4)
=[tanα+tan(π/4)]/[1-tanα*tan(π/4)]
=(tanα+1)(1-tanα)
=(sinα+cosα)/(cosα-sinα)
=2cos2α
=2(cos²α-sin²α)
=2(cosα+sinα)(cosα-sinα)
因α(0,四分之π),所以cosα+sinα>0
所以2(cosα-sinα)²=1
cosα-sinα=±√2/2
√2sin(π/4-α)=±√2/2
sin(π/4-α)=±1/2
π/4-α=±π/6
解得α=5π/12(舍去)或π/12