解:y=(sinx+cosx)²+1=sin²x+cos²x+²sinxcosx+1=1+sin2x+1=sin2x+2T=2π/2=π答:最小正周期为π。用到的公式:sin²x+cos²x=1sin2x=2sinxcosx(a+b)²=a²+b²+2aby=Asin(ωx+φ)+b的最小正周期为T=2π/ω
y=sin^2 x+cos^2 x+2sinxcosx+1=1+sin2x+1=sin2x+2所以T=2π/2=π