如图,在三角形ABC中,AB=AC,点D在CB的延长线上(1)求证AD*2-AB*2=BD·CD(2)若D在CB上,结论如何,

试证明你的结论
2025-06-24 16:46:03
推荐回答(1个)
回答1:

1、做AM⊥BC
∵AB=AC
∴BM=CM=1/2BC
∴AM²=AD²-DM²
AM²=AB²-BM²
∴AD²-DM²=AB²-BM²
AD²-AB²=DM²-BM²=(DM+BM)(DM-BM)=(DM+CM)(DM-BM)=CD×BD
即AD²-AB²=BD·CD
2、做AM⊥BC(D在BM上)
∵AB=AC
∴BM=CM=1/2BC
∴AM²=AD²-DM²
AM²=AB²-BM²
∴AD²-DM²=AB²-BM²
AB²-AD²=BM²-DM²=(BM+DM)(BM-DM)=(CM+DM)(BM-DM)=CD×BD
即AB²-AD²=BD·CD