(全国卷)已知等差数列{an}的前三项为a,4,3a,其前n项和为Sn,且Sk=2550,求a和k的值;求1⼀S1+1⼀S2+...+1⼀Sn的

2025-06-24 07:50:43
推荐回答(2个)
回答1:

等差数列得:a+3a=4*2
a=2
d=4-2=2
an=2+2(n-1)=2n

Sn=[2+2n]*n/2=n(n+1)
Sk=k(k+1)=2550
k^2+k-2550=0
(k+51)(k-50)=0
k=50.(k=-51,舍)

1/S1 +1/S2 +......+1/Sn

=1/1*2+1/2*3+....+1/n(n+1)

=1-1/2+1/2-1/3+...+1/n-1/(n+1)

=1-1/(n+1)

=n/(n+1)

回答2:

d=4-a
d=3a-4
na+n(n-1)d/2=2550

a=2,d=2,n=50

Sn=n(n+1)
1/Sn=1/n-1/(n+1)
1/S1+1/S2+...+1/Sn=n/(n+1)