若数列{an}满足a1=1⼀2,an+1=(n+1⼀n)an,则an

2025-06-24 09:41:17
推荐回答(1个)
回答1:

an+1=(n+1/n)an

a(n+1)-an=n+1/n

有:
an-a(n-1)=n-1+1/(n-1)

…………

a2-a1=1+1=2

等号左边和右边分别相加

有:an-a1=(1+2+3+……+n-1)+(1+1/2+1/3+……1/(n-1))

an=(n-1)n/2+(1+1/2+1/3+……1/(n-1))+1/2