如图所示,水平轨道PAB与14圆弧轨道BC相切于B点,其中,PA段光滑,AB段粗糙,动摩擦因数μ=0.1,AB段长度

2025-06-24 01:02:20
推荐回答(1个)
回答1:

(1)推力做功全部转化为弹簧的弹性势能,则有E=Ek    ①
即:25=

1
2
×200x2
解得x=0.5m.  ②
由牛顿运动定律得a=
kx
m
200×0.5
2
m/s2=50m/s2
     ③
(2)设滑块到达B点时的速度为vB,由能量关系有
W?μmgL=
1
2
mvB2

解得vB2=21m2/s2   ④
对滑块,由牛顿定律得FN?mg=m
vB2
R
     ⑤
FN=mg+m
vB2
R
=20+2×
21
1
N=62N.⑥
由牛顿第三定律可知,滑块对B点的压力62N    ⑦
(3)设滑块能够到达C点,且具有速度vc,由功能关系得
W?μmgL?mgR=
1
2
mvc2
   ⑧代入数据解得
vc=1m/s    ⑨
故滑块能够越过C点
从滑块离开C点到再次回到C点过程中,物体做匀变速运动,以向下为正方向,有
vc=-vc+gt     ⑩
解得t=
2vc
g
2
10
s=0.2s
     
答:(1)推力撤去瞬间,滑块的加速度为50m/s2
(2)滑块第一次滑动圆弧轨道最低点对B点的压力为62N.
(3)滑块能够越过C点,滑块离开C点再次回到C点的时间为0.2s.