数列{an}前n项和为Sn,a1=4,an+1=2Sn-2n+4.(1)求证:数列{an-1}为等比数列;(2)设bn=an?1anan+1,

2025-06-29 12:09:19
推荐回答(1个)
回答1:

证明:(1)∵an+1=2Sn-2n+4,∴n≥2时,an=2Sn-1-2(n-1)+4
∴n≥2时,an+1=3an-2(2分)
又a2=2S1-2+4=10,∴n≥1时an+1=3an-2(4分)
∵a1-1=3≠0,∴an-1≠0,

an+1?1
an?1
=3,∴数列{an-1}为等比数列      (6分)
(2)由(1)an?1=3n,∴an3n+1
bn
3n
(3n+1)(3n+1+1)
1
2
(
1
3n+1
?
1
3n+1+1
)
(9分)
Tn
1
2
(
1
31+1
?
1
32+1
+
1
32+1
?
1
33+1
+…+
1
3n+1
?
1
3n+1+1
)
=
1
2
(
1
4
?
1
3n+1+1
)
(11分)
Tn
1
8

∴8Tn<1(12分)