(1)求函数y=cos2x+cosx+54的最大值、最小值及相应x的取值集合;(2)求函数y=(log2x?2)(log4x?12)(1

2025-06-25 23:01:41
推荐回答(1个)
回答1:

(1)∵y=cos2x+cosx+

5
4
=(cosx+
1
2
2+
5
4

∴当cosx=-
1
2
时,ymin=
5
4
,此时x的取值集合为{x|x=
3
+2kπ,或x=
3
+2kπ,k∈Z};
当cosx=1时,ymax=
7
2
,此时x的取值集合为{x|x=2kπ,k∈Z}.
(2)∵1≤x≤8,∴0≤log4x≤
3
2

y=(log2x?2)(log4x?
1
2
)

=(2log4x-2)(log4x-
1
2

=2(log4x)2-3log4x+1
=2(log4x-
3
4
2+
17
8

∴当log4x=
3
4
时,ymin=
17
8

当log4x=0,或log4x=
3
2
时,ymax=
13
4